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Abstract
The vector couplings in the Duffin–Kemmer–Petiau (DKP) theory have been
revised. It is shown that minimal and nonminimal vector potentials behave
differently under charge-conjugation and time-reversal transformations. In
particular, it is shown that nonminimal vector potentials have been erroneously
applied to the description of elastic meson–nucleus scatterings and that the
space component of the nonminimal vector potential plays a crucial role for
the confinement of bosons. The DKP equation with nonminimal vector linear
potentials is mapped into the nonrelativistic harmonic oscillator problem and
the behavior of the solutions for this sort of DKP oscillator is discussed in
detail. Furthermore, the absence of Klein’s paradox and the localization of
bosons in the presence of nonminimal vector interactions are discussed.

PACS numbers: 03.65.Ge, 03.65.Pm

1. Introduction

The first-order Duffin–Kemmer–Petiau (DKP) formalism [1, 2] describes spin-0 and spin-1
particles and has been used to analyze relativistic interactions of spin-0 and spin-1 hadrons
with nuclei as an alternative to their conventional second-order Klein–Gordon and Proca
counterparts. The onus of equivalence between the formalisms represented an objection
to the DKP theory for a long time and it has only recently been shown that they yield
the same results in the case of minimally coupled vector interactions, on the condition
that one correctly interprets the components of the DKP spinor [3, 4]. However, the
equivalence between the DKP and the Proca formalisms already has a precedent [5]. The
equivalence does not hold if one considers partially conserved currents [6] and the DKP
formalism proved to be better than the Klein–Gordon formalism in the analysis of the
Kl3 decays, the decay-rate ratio �(η → γ γ )/�(π0 → γ γ ), and level shifts and widths
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in pionic atoms [7]. Furthermore, the DKP formalism enjoys a richness of couplings
which is not capable of being expressed in the Klein–Gordon and Proca theories. A
number of different couplings in the DKP formalism, with scalar and vector couplings
in the analogy with the Dirac phenomenology for proton–nucleus scattering, have been
employed in the phenomenological treatment of the elastic meson–nucleus scattering at
medium energies with a better agreement to the experimental data when compared to the
Klein–Gordon and Proca-based formalisms [8–13]. On the other hand, the DKP theory has
also experienced a renewed interest due to the discovery of a new conserved vector current
[3, 14–20], whose positive-definite time component would be a candidate to a probability
current, and as a bonus a hope for avoiding Klein’s paradox for bosons [20]. However, it
has been shown that the proposed new current is a fiasco as a probability current [21]. An
effort to disembarrass the status of that new current was done [22] but in [23] it was shown
to be indefensible. In [23] it also was shown that Klein’s paradox may exist in the DKP
theory with minimally coupled vector interactions. The DKP theory has also experienced a
renewal of life in the context of applications to quantum chromodynamics [24], covariant
Hamiltonian dynamics [25], relativistic phase space [26], curved spacetime [27], causal
approach [4, 28], superluminal tunneling [16], Bohm model [15, 17, 21], tunneling time
[18], S-matrix [29], five-dimensional Galilean invariance [30], pseudoclassical mechanics
[31], Bose–Einstein condensation [32], homogeneous magnetic field [33], Aharonov–Casher
phase [34], Aharonov–Bohm potential [35], position-dependent mass and vector step potential
[36], time-dependent mass and time-dependent vector fields [37], tensor DKP oscillator (tensor
coupling with a linear potential) [38–45] and its thermodynamics properties [46], vector DKP
oscillator (nonminimal vector coupling with a quadratic potential [39] and minimal plus
nonminimal vector couplings with a linear potential [41]), sextic oscillator (tensor coupling
with a linear plus a cubic potential) [47], vector step potential [20, 23, 48], vector Woods–
Saxon potential [49], vector deformed Hulthen potential [50], vector square well [51], vector
Coulomb potentials [43, 45, 51–53] and nonminimal vector step potentials [54].

The main purpose of the present paper is to report on the properties of the DKP theory
with the nonminimal vector coupling interaction. Nonminimal vector potentials, added by
other kinds of Lorentz structures, have already been used successfully in a phenomenological
context for describing the scattering of mesons by nuclei [8, 9, 11, 13]. In this paper it
is shown that charge-conjugation and time-reversal symmetries have some special features
not displayed by minimal vector potentials, in particular the nonminimal vector potentials
do not couple to the charge. It is also shown that nonminimal vector couplings have been
used improperly in the phenomenological description of the elastic meson–nucleus scatterings
[8, 9, 11, 13]. Furthermore, nonminimal vector potentials can be used as a model for confining
bosons and that linear potentials lead to a sort of relativistic DKP oscillator.

This paper is organized as follows. In section 2 we present the general DKP equation,
discuss conditions on the interactions which lead to a conserved current and effects of
parity, charge-conjugation and time-reversal transformations on the vector Lorentz structures.
Adopting a specific representation for the DKP matrices, we set up the one-dimensional
equations for the components of the DKP spinor (IIA for the spin-0 sector and IIB for the
spin-1 sector) in the presence of minimal and nonminimal vector interactions. We point
out that the space component of the nonminimal vector potential cannot be absorbed into
the spinor, as diffused in the literature. Beyond that, we show that the space component of
the nonminimal vector potential could be irrelevant for the formation of bound states for the
potentials vanishing at infinity but its presence is a sine qua non condition for confinement.
In section 3 we focus on the nonminimal vector linear potentials and discuss the solutions
of the vector DKP oscillator in detail. The relevance of the nonminimal vector potential for
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the confinement of bosons is reinforced. An apparent paradox related to the localization of
bosons in the presence of strong potentials is solved by introducing the concepts of effective
mass and effective Compton wavelength. Finally, in section 4 we draw some conclusions.

2. The DKP equation and the vector couplings

The DKP equation for a free boson is given by [2] (with units in which h̄ = c = 1)

(iβμ∂μ − m)ψ = 0, (1)

where the matrices βμ satisfy the algebra

βμβνβλ + βλβνβμ = gμνβλ + gλνβμ (2)

and the metric tensor is gμν = diag (1,−1,−1,−1). The algebra expressed by (2) generates a
set of 126 independent matrices whose irreducible representations are a trivial representation,
a five-dimensional representation describing the spin-0 particles and a ten-dimensional
representation associated to spin-1 particles. The DKP spinor has an excess of components
and the theory has to be supplemented by an equation which allows us to eliminate the
redundant components. That constraint equation is obtained by multiplying the DKP equation
by 1 − β0β0, namely

iβjβ0β0∂jψ = m(1 − β0β0)ψ, j runs from 1 to 3. (3)

This constraint equation expresses three (four) components of the spinor by the other two (six)
components and their space derivatives in the scalar (vector) sector so that the superfluous
components disappear and there only the physical components of the DKP theory remain. The
second-order Klein–Gordon and Proca equations are obtained when one selects the spin-0 and
spin-1 sectors of the DKP theory.

A well-known conserved four-current is given by

Jμ = 1
2 ψ̄βμψ, (4)

where the adjoint spinor ψ̄ is given by

ψ̄ = ψ †η0 (5)

with

ημ = 2βμβμ − gμμ (no summation) (6)

in such a way that (η0βμ)† = η0βμ (the matrices βμ are Hermitian with respect to η0). The
time component of this current is not positive definite but it may be interpreted as a charge
density. The factor 1/2 multiplying ψ̄βμψ , of no importance regarding the conservation law, is
in order to hand over a charge density conformable to that one used in the Klein–Gordon theory
and its nonrelativistic limit (see e.g. [55]). Then the normalization condition

∫
dτ J 0 = ±1

can be expressed as∫
dτ ψ̄β0ψ = ±2, (7)

where the plus (minus) sign must be used for a positive (negative) charge, and the expectation
value of any observable O may be given by

〈O〉 =
∫

dτ ψ̄β0Oψ∫
dτ ψ̄β0ψ

, (8)

where O must be Hermitian with respect to β0, namely (β0O)† = β0O, for ensuring that 〈O〉
is a real quantity.
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With the introduction of interactions, the DKP equation can be written as

(iβμ∂μ − m − V )ψ = 0, (9)

where the more general potential matrix V is written in terms of 25 (100) linearly independent
matrices pertinent to the five (ten)-dimensional irreducible representation associated with the
scalar (vector) sector. In the presence of interactions, Jμ satisfies the equation

∂μJμ +
i

2
ψ̄(V − η0V †η0)ψ = 0. (10)

Thus, if V is Hermitian with respect to η0 then the four-current will be conserved. The
potential matrix V can be written in terms of well-defined Lorentz structures. For the spin-0
sector there are two scalar, two vector and two tensor terms [56], whereas for the spin-1 sector
there are two scalar, two vector, a pseudoscalar, two pseudovector and eight tensor terms [57].
The tensor terms have been avoided in applications because they furnish noncausal effects
[56, 57]. Considering only the vector terms, V is in the form

V = βμA(1)
μ + i[P, βμ]A(2)

μ , (11)

where P is a projection operator (P 2 = P and P † = P ) in such a way that ψ̄Pψ behaves as a
scalar and ψ̄[P, βμ]ψ behaves like a vector. Note that the vector potential A(1)

μ is minimally
coupled but not A(2)

μ . One very important point to note is that this matrix potential leads to
a conserved four-current but the same does not happen if instead of i[P, βμ] one uses either
Pβμ or βμP , as in [8, 9, 11, 13, 39]. As a matter of fact, in [8] it is mentioned that Pβμ and
βμP produce identical results.

If the terms in the potential V are time-independent one can write ψ(�r, t) =
φ(�r) exp(−iEt), where E is the energy of the boson, in such a way that the time-independent
DKP equation becomes[

β0
(
E − A

(1)
0

)
+ iβi

(
∂i + iA(1)

i

) − (
m + i[P, βμ]A(2)

μ

)]
φ = 0. (12)

In this case Jμ = φ̄βμφ/2 does not depend on time, so that the spinor φ describes a stationary
state. Note that the time-independent DKP equation is invariant under a simultaneous shift of
E and A

(1)
0 , such as in the Schrödinger equation, but the invariance does not maintain regarding

E and A
(2)
0 . Equation (12) for the characteristic pair (Ek, φk) can be written as(

Ek − A
(1)
0

)
β0φk + i

(−→
∂i + iA(1)

i

)
βiφk − mφk − iA(2)

μ [P, βμ]φk = 0 (13)

and its adjoint form, by changing k by k′, as(
Ek′ − A

(1)
0

)
φ̄k′β0 − iφ̄k′βiη0

(←−
∂i − iA(1)

i

) − mφ̄k′η0 + iA(2)
μ φ̄k′η0[P, βμ]† = 0. (14)

By multiplying (13) from the left by φ̄k′ and (14) from the right by η0φk leads to(
Ek − A

(1)
0

)
φ̄k′β0φk + iφ̄k′βi

(−→
∂i + iA(1)

i

)
φk − mφ̄k′φk − iA(2)

μ φ̄k′[P, βμ]φk = 0 (15)

and(
Ek′−A

(1)
0

)
φ̄k′β0φk − iφ̄k′βi

(←−
∂i − iA(1)

i

)
φk − mφ̄k′φk + iA(2)

μ φ̄k′η0[P, βμ]†η0φk = 0, (16)

respectively. Subtracting (16) from (15) and considering that the spinors fit boundary
conditions such that∫

dτ ∂i(φ̄kβ
iφk′) = 0, (17)

one gets

(Ek − Ek′)

∫
dτ φ̄kβ

0φk′ = 0. (18)
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Equation (18) is an orthogonality statement applying to the DKP equation. Any two stationary
states with distinct energies and subject to suitable boundary conditions are orthogonal in the
sense that ∫

dτ φ̄kβ
0φk′ = 0, for Ek �= Ek′ . (19)

In addition, in view of (7) the spinors φk and φk′ are said to be orthonormal if∫
dτ φ̄kβ

0φk′ = ±2δEkEk′ . (20)

The DKP equation is invariant under the parity operation, i.e. when �r → −�r , if A
(1)
i and

A
(2)
i change sign, whereas A

(1)
0 and A

(2)
0 remain the same. This is because the parity operator

is P = exp(iδP )P0η
0, where δP is a constant phase and P0 changes �r into −�r . Because

this unitary operator anticommutes with βi and [P, βi], they change sign under a parity
transformation, whereas β0 and [P, β0], which commute with η0, remain the same. Since
δP = 0 or δP = π , the spinor components have definite parities. The charge-conjugation
operation changes the sign of the minimal interaction potential, i.e. changes the sign of A(1)

μ .
This can be accomplished by the transformation ψ → ψc = Cψ = CKψ , where K denotes
the complex conjugation and C is a unitary matrix such that Cβμ = −βμC. The matrix that
satisfies this relation is C = exp(iδC)η0η1. The phase factor exp(iδC) is equal to ±1; thus
E → −E. Note also that Jμ → −Jμ, as should be expected for a charge current. Meanwhile
C anticommutes with [P, βμ] and the charge-conjugation operation entails no change on A(2)

μ .
By the same token, it can be shown that A(1)

μ and A(2)
μ have opposite behavior under the time-

reversal transformation in such a way that both sorts of vector potentials change sign under
PCT . The invariance of the nonminimal vector potential under charge conjugation means
that it does not couple to the charge of the boson. In other words, A(2)

μ does not distinguish
particles from antiparticles. Hence, whether one considers spin-0 or spin-1 bosons, this sort
of interaction cannot exhibit Klein’s paradox.

2.1. Scalar sector

For the case of spin-0, we use the representation for the βμ matrices given by [52]

β0 =
(

θ 0

0
T

0

)
, βi =

(
0̃ ρi

−ρT
i 0

)
, i = 1, 2, 3, (21)

where

θ =
(

0 1
1 0

)
, ρ1 =

(−1 0 0
0 0 0

)
ρ2 =

(
0 −1 0
0 0 0

)
, ρ3 =

(
0 0 −1
0 0 0

)
,

(22)

where 0, 0̃ and 0 are 2×3, 2 ×2 and 3×3 zero matrices, respectively, while the superscript T
designates matrix transposition. Here the projection operator can be written as [56]

P = 1
3 (βμβμ − 1) = diag (1, 0, 0, 0, 0). (23)

In this case P picks out the first component of the DKP spinor. The five-component spinor can
be written as ψT = (ψ1, . . . , ψ5) in such a way that the DKP equation for a boson constrained
to move along the X-axis decomposes into(

D
(−)
0 D

(+)
0 − D

(−)
1 D

(+)
1 + m2

)
ψ1 = 0

D
(+)
0 ψ1 = −imψ2, D

(+)
1 ψ1 = −imψ3 (24)

ψ4 = ψ5 = 0,

5
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where

D(±)
μ = ∂μ + iA(1)

μ ± A(2)
μ . (25)

Furthermore,

J 0 = Re(ψ∗
2 ψ1) = − 1

m
Im

(
ψ∗

1 D
(+)
0 ψ1

)
J 1 = − Re(ψ∗

3 ψ1) = 1

m
Im

(
ψ∗

1 D
(+)
1 ψ1

)
J 2 = J 3 = 0.

(26)

Note that, in the absence of the nonminimal potential, the first line of (24) reduces to the
Klein–Gordon equation and that ψ3, ψ4 and ψ5 are the superfluous components of the DKP
spinor (the reason that ψ4 = ψ5 = 0 is because of the one-dimensional movement).

In the time-independent case, one has(
d2

dx2
+ 2iA(1)

1

d

dx
+ k2

)
φ1 = 0

φ2 = 1

m

(
E − A

(1)
0 + iA(2)

0

)
φ1 (27)

φ3 = i

m

(
d

dx
+ iA(1)

1 + A
(2)
1

)
φ1,

where

k2 = (
E − A

(1)
0

)2 − m2 − (
A

(1)
1

)2
+ i

dA
(1)
1

dx
+

(
A

(2)
0

)2 − (
A

(2)
1

)2
+

dA
(2)
1

dx
. (28)

Meanwhile,

J 0 = E − A
(1)
0

m
|φ1|2, J 1 = 1

m

[
A

(1)
1 |φ1|2 + Im

(
φ∗

1
dφ1

dx

)]
. (29)

It is worthwhile to note that J0 becomes negative in regions of space where E < A
(1)
0 (a

circumstance associated with Klein’s paradox) and that A(2)
μ does not intervene explicitly in

the current. The orthonormalization formula (20) becomes∫ +∞

−∞
dx

Ek+Ek′
2 − A

(1)
0

m
φ∗

1kφ1k′ = ±δEkEk′ (30)

regardless A
(1)
1 and A(2)

μ . Equation (30) is in agreement with the orthonormalization formula
for the Klein–Gordon theory in the presence of a minimally coupled potential [55]. This is not
surprising, because, after all, both DKP equation and Klein–Gordon equation are equivalent
under minimal coupling.

The form ∂1 + iA(1)
1 in equation (24) suggests that the space component of the minimal

vector potential can be gauged away by defining a new spinor

ψ̃ = exp(i�)ψ, A
(1)
1 = ∂1�, (31)

even if A
(1)
1 is time dependent. Without any question(

∂1 + iA(1)
1

)
ψ = exp(−i�)∂1ψ̃ (32)

in such a way that ψ̃ satisfies the DKP equation without A
(1)
1 . In [8] and [9] the term

involving A
(2)
1 was explicitly absorbed into the wavefunction. Nevertheless, it seems that there

is no chance to dissociate from this term. As a matter of fact, we will show that the space

6



J. Phys. A: Math. Theor. 43 (2010) 055306 T R Cardoso et al

component of the nonminimal vector potential plays a peremptory role for confining bosons.
The possibility for ruling out A

(1)
1 but not A

(2)
1 is reinforced by the observation that the first

derivative of a second-order differential equation, such as the term containing A
(1)
1 in the first

line of equation (27), is a well-known trick in mathematics.
It is noticeable that if

∣∣A(2)
μ

∣∣ → ∞ as |x| → ±∞, confining solutions for a pure
nonminimal vector potential will be possible on the condition that the space component of
A(2)

μ is stronger, or has a dominant asymptotic behavior, than its time component. Otherwise,
nothing but continuum states will be possible. In this last circumstance, a boson can tunnel into
the classically forbidden region, an unexpected result in nonrelativistic mechanics and by no
means related to Klein’s paradox. On the other hand, for a pure nonminimal vector potential
going to zero at infinity, a necessary condition for the existence of bound-state solutions (with
|E| < m) is that

(
A

(2)
0

)2 − (
A

(2)
1

)2
+

dA
(2)
1

dx
> 0 (33)

at any arbitrary point on the X-axis. In this case, it is the time component of the nonminimal
vector potential that plays a leading role in establishing bound states.

2.2. Vector sector

For the case of spin 1, the βμ matrices are [51]

β0 =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0
T

0 I 0

0
T

I 0 0

0
T

0 0 0

⎞⎟⎟⎟⎟⎠ , βi =

⎛⎜⎜⎜⎝
0 0 ei 0

0
T

0 0 −isi

−eT
i 0 0 0

0
T −isi 0 0

⎞⎟⎟⎟⎠ , (34)

where si are the 3×3 spin-1 matrices (si)jk = −iεijk , ei are the 1×3 matrices (ei)1j = δij and
0 = (0 0 0), while I and 0 designate the 3×3 unit and zero matrices, respectively. In this
representation,

P = βμβμ − 2 = diag (1, 1, 1, 1, 0, 0, 0, 0, 0, 0), (35)

i.e. P projects out the four upper components of the DKP spinor. With the spinor written as
ψT = (ψ1, . . . , ψ10), and partitioned as

ψ
(+)
I =

(
ψ3

ψ4

)
, ψ

(−)
I = ψ5

ψ
(+)
II =

(
ψ6

ψ7

)
, ψ

(−)
II = ψ2 (36)

ψ
(+)
III =

(
ψ10

−ψ9

)
, ψ

(−)
III = ψ1

the one-dimensional DKP equation can be expressed in the compact form(
D

(∓)
0 D

(±)
0 − D

(∓)
1 D

(±)
1 + m2

)
ψ

(±)
I = 0

D
(±)
0 ψ

(±)
I = −imψ

(±)
II , D

(±)
1 ψ

(±)
I = −imψ

(±)
III (37)

ψ8 = 0,

7
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where D(±)
μ is again given by (25). In addition, expressed in terms of (36) the current can be

written as

J 0 = Re
(
ψ

(+)†
II ψ

(+)
I + ψ

(−)†
II ψ

(−)
I

) = − 1

m
Im

(
ψ

(+)†
I D

(+)
0 ψ

(+)
I + ψ

(−)†
I D

(−)
0 ψ

(−)
I

)
J 1 = −Re

(
ψ

(+)†
III ψ

(+)
I + ψ

(−)†
III ψ

(−)
I

) = 1

m
Im

(
ψ

(+)†
I D

(+)
1 ψ

(+)
I + ψ

(−)†
I D

(−)
1 ψ

(−)
I

)
(38)

J 2 = J 3 = 0.

Note that the third line plus the second equation in the middle line of (37) are the constraint
equations which allow one to eliminate the superfluous components (ψ1, ψ8, ψ9 and ψ10) of
the DKP spinor. The component ψ8 = 0 because the movement is restricted to the X-axis.

Meanwhile the time-independent DKP equation decomposes into(
d2

dx2
+ 2iA(1)

1

d

dx
+ k2

±

)
φ

(±)
I = 0

φ
(±)
II = 1

m

(
E − A

(1)
0 ± iA(2)

0

)
φ

(±)
I (39)

φ
(±)
III = i

m

(
d

dx
+ iA(1)

1 ± A
(2)
1

)
φ

(±)
I ,

where

k2
± = (

E − A
(1)
0

)2 − m2 − (
A

(1)
1

)2
+ i

dA
(1)
1

dx
+

(
A

(2)
0

)2 − (
A

(2)
1

)2 ± dA
(2)
1

dx
. (40)

Now the components of the four-current are

J 0 = E − A
(1)
0

m

(∣∣φ(+)
I

∣∣2
+

∣∣φ(−)
I

∣∣2)
J 1 = 1

m

[
A

(1)
1

(∣∣φ(+)
I

∣∣2
+

∣∣φ(−)
I

∣∣2)
+ Im

(
φ

(+)†
I

dφ
(+)
I

dx
+ φ

(−)†
I

dφ
(−)
I

dx

)]
(41)

and the orthonormalization expression (20) takes the form∫ +∞

−∞
dx

Ek+Ek′
2 − A

(1)
0

m

(
φ

(+)†
Ik φ

(+)
Ik′ + φ

(−)†
Ik φ

(−)
Ik′

) = ±δEkEk′ . (42)

Just as for scalar bosons, J 0 < 0 for E < A
(1)
0 and A(2)

μ does not appear in the current.

Similarly, A
(1)
1 and A(2)

μ do not manifest explicitly in the orthonormalization formula.
From (39) to (40), one sees that the solution for the spin-1 sector consists in searching

solutions for two Klein–Gordon-like equations, owing to the term dA
(2)
1 /dx in (40). It should

not be forgotten, though, that the equations for φ
(+)
I and φ

(−)
I are not indeed independent

because E appears in both equations. Evidently, matching a common value for the energy
might compromise the existence of solutions for spin-1 bosons when compared to the solutions
for spin-0 bosons with the very same potentials. This amounts to say that the solutions for
the spin-1 sector of the DKP theory, if they really exist, can be obtained from a restrict class
of solutions of the spin-0 sector. This limitation on the possible solutions for spin-1 bosons
as compared for spin-0 bosons should not be a surprise if one remembers that, in the absence
of any interaction, all the components of the free Proca equation obey a free Klein–Gordon
equation but with an additional constraint on the components of the Proca field.
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3. The nonminimal vector linear potential

Having set up the spin-0 and spin-1 equations for vector interactions, we are now in a position
to use the machinery developed above in order to solve the DKP equation with specific forms
for nonminimal interactions. Let us consider pure nonminimal vector linear potentials in the
form

A
(2)
0 = m2ω0|x|, A

(2)
1 = m2ω1x, (43)

where ω0 and ω1 are dimensionless quantities. Our problem is to solve (27) and (39) for φ

and to determine the allowed energies. Although the absolute value of x in A
(2)
0 is irrelevant

in the effective equations for φ1 (in the scalar sector) and φ
(±)
I (in the vector sector), it is there

for ensuring the covariance of the DKP theory under parity. It follows that the DKP spinor
will have a definite parity and Aμ and Jμ will be genuine four-vectors.

3.1. Scalar sector

For the spin-0 sector of the DKP theory one finds that φ1 obeys the second-order differential
equation

d2φ1

dx2
+ (ε2 − m4�2x2)φ1 = 0, (44)

where

ε2 = E2 − m2 + m2ω1, �2 = ω2
1 − ω2

0. (45)

The solution for (44), with ε2 > 0 and �2 > 0, is precisely the well-known solution of the
Schrödinger equation for the nonrelativistic harmonic oscillator (see, e.g. [58])

ε2
n = (2n + 1)m2|�| (46)

(φ1)n = NnHn(m
√

|�|x) exp

(
−m2|�|

2
x2

)
, (47)

where n = 0, 1, 2, . . . , Nn is a normalization constant, and Hn (ζ ) is an nth degree Hermite
polynomial in ζ . Note that the condition �2 > 0 requires that |ω1| > |ω0|, meaning that
the space component of the potential must be stronger than its time component in order to the
effective potential be a true confining potential. Nevertheless, there is no requirement on the
signs of ω1 and ω0. From (46) one obtains the discrete set of DKP energies (symmetrical about
E = 0 as it should be since A(2)

μ does not distinguish particles from antiparticles) En = ±|En|,
where

|En| = m
√

1 − ω1 + (2n + 1)|�| (48)

irrespective to the sign of ω0. In general, |En| is higher for ω1 < 0 than for ω1 > 0. It increases
with the quantum number and it is a monotonically decreasing function of ω0. In order to
ensure the reality of the spectrum, the coupling constants ω0 and ω1 satisfy the additional
constraint

(2n + 1)

√
ω2

1 − ω2
0 � ω1 − 1. (49)

If one squares (49) the resulting inequality is in general a quadratic algebraic inequality in ω1

(or ω0), which can be solved analytically. The price paid is that some spurious solutions can
appear in this process, although, of course, these can be eliminated by checking whether they
satisfy the original inequality. A more instructive procedure is to follow a graphical method,

9
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Figure 1. Graphical solution of (49) for |ω0| = 1.5 for the three lowest quantum numbers. Heavy
lines for fH (ω1) and light line for fS(ω1).

by which one seeks the regions of the functions of ω1 in (49): a hyperbole on the left-hand
side,

fH (ω1) = (2n + 1)

√
ω2

1 − ω2
0, (50)

and a straight line on the right-hand side,

fS(ω1) = ω1 − 1, (51)

where fH (ω1) is a nonnegative function having two symmetric branches and for |ω1| � |ω0|
it approximates the function (2n + 1)|ω1|. Figure 1 present results for the three first quantum
numbers with |ω0| > 1. For ω1 > |ω0|, this figure shows clearly that fH � fS only for some
ω1 � (ω̃1)n > |ω0|, although fH > fS for all ω1 < −|ω0|. The intersection points of fH and
fS, for |ω0| > 1, correspond to |En| = 0. Figure 1 also allows one to conclude that |En| > 0
for |ω0| < 1. Note that there is a high density of states (number of states in a fixed range of
energy) corresponding to an infinite set of quasi-degenerate solutions in the neighborhood of
|ω1| = |ω0|.

In the weak-coupling limit, ω1  1 and |�|  1, |En| � m for small quantum numbers
and (48) becomes

|En| � m

[
1 − ω1

2
+

(
n +

1

2

)
|�|

]
. (52)

This equally spaced energy spectrum is a sort of nonrelativistic limit. Therefore, it can be said
that the linear potentials given by (43) describe a genuine nonminimal vector DKP oscillator.
Nevertheless, the Lorentz structure of the potentials plays no role in a nonrelativistic scheme,
because one has to use the Schrödinger equation with the potential A

(2)
0 + A

(2)
1 . Despite the

10
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Figure 2. Positive spectrum of spin-0 bosons for the three lowest quantum numbers as a function
of ω0/|ω1|, for ω1 = −1 (m = 1).

effective harmonic oscillator potential appearing in (44), the linear potentials given by (43)
do not furnish bound-state solutions in the Schrödinger equation because the sum A

(2)
0 + A

(2)
1

with A
(2)
1 �= 0 is unbounded from below.

On the other hand, for |ω1| � |ω0| one has that

|En| � m
√

1 − ω1 + (2n + 1)|ω1|, (53)

so that |En| > m for ω1 < 0. Concerning ω1 > 0, as far as ω1 increases, the spectrum
moves toward E = 0, except for ω0 = 0 which maintains |En| � m (the spectrum acquiesces
|E0| = m in this limit case).

Figures 2, 3 and 4 illustrate the spectrum in terms of ω0/|ω1| for three different values of
ω1. For ω1 < 1 there is a spectral gap given by

2m
√

1 − ω1 + (2n + 1)|�| (54)

and there are infinitely many energy levels above m where, in the absence of interaction, there
was the continuum. As far as ω1 increases, the spectrum moves toward E = 0, except for
ω0 = 0. The gap tends to vanish as ω1 becomes close to 1 (for ω0 �= 0) and so the positive-
and negative-energy levels tend to be very close to each other. Figures 5 and 6 illustrate the
spectrum in terms of ω1/ω0 for two different values of ω0.

The charge density

J 0 = E

m
|φ1|2 (55)

dictates that φ1 must be normalized as
|E|
m

∫ +∞

−∞
dx|φ1|2 = 1. (56)
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Figure 3. The same as figure 2, for ω1 = 0.5.

Figure 4. The same as figure 2, for ω1 = 2.5.
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Figure 5. Positive spectrum of spin-0 bosons for the three lowest quantum numbers as a function
ω1/ω0, for ω0 = 0.5 (m = 1).

Figure 6. The same as figure 5, for ω0 = 2.
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Using the property [58]∫ +∞

−∞
dζ H 2

n (ζ ) exp(−ζ 2) = 2nn!
√

π, (57)

one finds that the normalization constant can be chosen to be

Nn =
(

m|�|
π

)1/4 √
m

2nn! |En| , for En �= 0. (58)

Thus, for En �= 0, one has

J 0
n (x) = sign(En)

2nn!

√
m|�|

π
H 2

n (m
√

|�|x) exp(−m2|�|x2). (59)

Then, using (8), the quantity (�xn)
2 = 〈x2〉n − 〈x〉2

n can be written as

(�xn)
2 =

∫ +∞

−∞
dx

∣∣J 0
n (x)

∣∣ x2 −
(∫ +∞

−∞
dx

∣∣J 0
n (x)

∣∣ x)2

.

Now it is a simple matter to write down the uncertainty in the position

�xn =
√

n + 1/2

m2|�| . (60)

If �xn shrinks then �pn (uncertainty in the momentum) will swell, in consonance with the
Heisenberg uncertainty principle. Nevertheless, the maximum uncertainty in the momentum
is given by m requiring that is impossible to localize a boson in a region of space less than
half of its Compton wavelength (see, for example, [59, 60]). Nevertheless, if one defines an
effective mass as meff = m

√|�| and an effective Compton wavelength as λeff = 1/meff , one
will find that �xn = λeff

√
n + 1/2. It follows that the high localization of bosons, related

to high values of |�| (|ω1| � |ω0|), never menaces the single-particle interpretation of the
DKP theory. For |�| � 0 (|ω1| � |ω0|), one has that meff � 0 and the quasi-degenerate
solutions mentioned above are related to very delocalized states. As for the behavior in the
neighborhood of En = 0 one should note that, despite J 0

n and �xn being independent of En,
the DKP spinor is not defined for |En| = 0. Thus, En = 0 must be ruled out of the theory.
Although positive- and negative-energy levels do not touch, they can be very close to each
other for moderately strong coupling constants without any danger of reaching the conditions
for Klein’s paradox.

3.2. Vector sector

As for the spin-1 sector, proceeding as before, one finds that φ
(±)
I obeys the equation

d2φ
(±)
I

dx2
+

(
ε2
± − m4�2x2

)
φ

(±)
I = 0, (61)

where �2 is defined as in (45) and

ε2
± = E2 − m2 ± m2ω1. (62)

For bound states, to which we shall devote our attention, we must require ε2
± > 0 and �2 > 0,

as before. Thus, the solution is expressed as

ε2
n± = (2n± + 1) m2|�| (63)(
φ

(±)
I

)
n±

= Nn±Hn±(m
√

|�|x) exp

(
−m2|�|

2
x2

)
, (64)
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where n± = 0, 1, 2, . . . , Nn− is a normalization constant and Nn+ = (N3, N4)
T is a column

matrix whose elements are normalization constants related to the solutions for φ3 and φ4.
Hence, the necessary conditions for binding spin-1 bosons subject to linear potentials have
been put forward. The formal analytical solutions have been obtained and it has been revealed
that the solutions related to the spinor φ

(+)
I are formally the same as those ones for spin-0

bosons. Now we move on to match a common energy to the spin-1 boson problem. The
matching condition requires that the quantum numbers n+ and n− must satisfy the relation

n+ − n− = 1√
1 − (

ω0
ω1

)2

ω1

|ω1| . (65)

This constraint on the nodal structure of φ
(+)
I and φ

(−)
I dictates that acceptable solutions only

occur for a countable number of possibilities for |ω1|/|ω0|, namely

|ω0|
|ω1| =

√
1 − 1

(n+ − n−)2 . (66)

4. Conclusions

We showed that minimal and nonminimal vector interactions behave differently under charge-
conjugation and time-reversal transformations. Although Klein’s paradox cannot be treated
as unworthy of regard in the DKP theory with minimally coupled vector interactions, it never
makes its appearance in the case of nonminimal vector interactions because they do not couple
to the charge.

In the case of a pure nonminimal vector coupling, both particle and particle energy levels
are members of the spectrum, and the particle and antiparticle spectra are symmetrical about
E = 0. If the interaction potential is attractive (repulsive) for bosons it will also be attractive
(repulsive) for antibosons. However, there is no crossing of levels because possible states in
the strong field regime with E = 0 are in fact unnormalizable. These facts imply that there is
no channel for spontaneous boson–antiboson creation and for that reason the single-particle
interpretation of the DKP equation is ensured. The charge conjugation operation allows us to
migrate from the spectrum of particles to the spectrum of antiparticles and vice versa just by
changing the sign of E. This change induces no change in the nodal structure of the components
of the DKP spinor and so the nodal structure of the four-current is preserved.

In view of recent developments on the construction of a positive-definite inner product
for the Klein–Gordon theory [61], we acknowledge that we took a very conservative stance
when considering a current that cannot be related to a probability current. The interesting
possibility of a probability current in the DKP theory, constructed from the energy–momentum
tensor, launched in [14, 15], though, received a severe criticism in [21] and [23]. It will then
be challenging to construct a probability current in the DKP theory from a relativistically
invariant positive-definite inner product. Notwithstanding, the conserved charge current plus
the charge conjugation operation are enough to infer about the absence of Klein’s paradox under
nonminimal vector interactions, or its possible presence under minimal vector interactions.

We showed that nonminimal vector couplings have been used improperly in the
phenomenological description of elastic meson–nucleus scatterings potential by observing
that the four-current is not conserved when one uses either the matrix Pβμ or βμP , even
though the linear forms constructed from those matrices behave as true Lorentz vectors.
We also pointed out that the space component of the nonminimal vector potential cannot be
absorbed into the spinor. Beyond that, we showed that the space component of the nonminimal
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vector potential could be irrelevant for the formation of bound states for potentials vanishing
at infinity but its presence is an essential ingredient for confinement.

For the one-dimensional problem, the DKP equation with nonminimal vector potentials
was mapped into a Sturm–Liouville problem in such a way that the solution for linear potentials
could be found by solving a Schrödinger-like problem for the nonrelativistic harmonic
oscillator. The behavior of the solutions for this sort of DKP oscillator was discussed in
detail. That model reinforced the absence of Klein’s paradox. Furthermore, due to the fact
that there is no room for the boson–antiboson production, a boson embedded in this sort of
background acquires an effective mass which permits that it can be strictly localized. We also
showed that the DKP oscillator for vector bosons is conditionally solvable.

In addition we provided a better understanding of the DKP theory with a coupling full
of phenomenological relevance since it has not yet been well explored in the literature, it was
conceived as an exactly solvable vector model relating to the confinement of bosons.
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